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Abstract—We have developed a representation of genome data which has proven itself useful for
describing data at a Human Genome Center. Genomic data have a graph-like structure and
representing the concepts and relationships of genetics as a graph simplifies the development of
databases for genome laboratories. Graphs are a comfortable communication medium for
biologists and computer scientists and graph diagrams assist in the development of databases by
facilitating the exchange of expertise. We have tailored a graph language for modeling genomic
data and describe our process of using graphs to develop genome databases. Copyright © 1996
Elsevier Science Ltd.
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1. INTRODUCTION

Databases for Human Genome Project researchers must be developed in a way that
supports the research effort and blends with the work flow of a Genome Center. These
databases should provide the necessary support for capturing and retrieving data, as well
as aiding in new research.

Current development of databases relies heavily on the amount of biological know-
ledge that the database developer possesses. Since many database developers are
computer scientists, this can be a problem. We describe a process which brings the
biologist into database design and facilitates communication between the biologist and
developer, therefore improving the final database.

Conceptual modeling is the process of describing the domain independently of any
database management system [1]. Since there is no need for an understanding of
databases in the initial phase of conceptual modeling, a biologist is able to describe the
domain, using an appropriate scientific vocabulary, in a way that can then be understood
by a computer scientist who is responsible for implementing the database. The formal
(theoretical) language used for conceptual modeling is called a conceptual model.
Conceptual modeling is usually an interactive process and it is simplified when the
conceptual model is natural to the domain of genetics and precise enough for the
computer scientist to interpret unambiguously.

Database development is a multi-step process, similar to other software development
processes. Our database development process consists of conceptual, logical, and
physical design phases which, respectively, incorporate into the database design process
the concepts of the domain; the data model of the database management system; and
implementation decisions which affect the ease and efficiency of accessing data.
Understanding how and what to design in each phase of the process increases the
likelihood that the final database will meet the future needs of the user as well as
immediate needs. Logical and physical design issues are studied heavily in databases
research. Conceptual design is more difficult to examine in the abstract because of its
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dependence on the domain of interest. We have developed a conceptual model to be
used for conceptual design which is tailored to the domain of genetics.

Another advantage of defining conceptual design as a separate stage of development is
that the result of the conceptual modeling process can be reused. The resuit of
conceptual modeling is a set of conceptual schemas which can be reused to produce
databases in different database management systems, as part of other conceptual
schemas, or as a basis for object-oriented application development.

We describe some of the requirements for a genome center database, our conceptual
design process for a database, our conceptual model, how to use it for design, and other
possible uses for a graph conceptual model.

2. HUMAN GENOME CENTER DATABASE

A genome center database is a central repository for data collection and access within
a Human Genome Center. It captures the laboratory data generated by the center, the
results published by the center and the data received from other sources. Providing a
single database with multiple, project-specific, data entry applications, query capabili-
ties, and other end-user applications supports the work flow of a center. Integration of
data within a single database also allows researchers to discern information necessary for
their research projects, even when originally discovered by another researcher.

Our conceptual model has been developed while designing several laboratory data-
bases and a central database for a Human Genome Center. Developing one database to
capture the data from the several laboratories in a Human Genome Center places an
increased burden on conceptual design because the diverse data sources must be
captured and integrated within one database. In addition, the design must support
smooth transitions as laboratory processes change.

2.1. Capturing the data flow

Current genome research is oriented toward developing maps of genome-derived
reagents at different levels of resolution. The genome reagents include chromosomes
(normal and abnormal), clones of subregions of genomic DNA maintained in a variety of
cloning vectors, cDNA clones derived from different tissues, and markers for polymor-
phic sites in genomes from populations of individuals. Common genome maps include:
cytogenetic maps which localize a reagent to a sub-region of a chromosome; genetic
maps which order polymorphic genetic markers and can be used to find the approximate
chromosomal location of genetic material responsible for an inherited trait; physical
maps which provide a physical ordering of reagents relative to a chromosome; and the
DNA sequence which is a type of high-resolution physical map. Such maps are being
developed for a number of diverse species including human, mouse, Drosophila, C.
elegans, budding yeast, fusion yeast, Arabidopsis, many prokaryotic genomes, and
several agriculturally important plant and animal species.

As these genome projects progress, more attention will be turned to identifying: the
location of all genes and the genome components that regulate their expression; the
biochemical function of gene products including their role in metabolic and regulatory
pathways and interactions with other gene products; the pattern of individual gene
expression during development; the subcellular location of gene products; and the
evolutionary history of genes. As this data corpus grows, biology-related research will be
facilitated by integrating genome and biological data in such a way that it can be explored
in a flexible and meaningful way by researchers. Presently, the mapping data from
genome project research are organized largely into species-specific and sometimes
chromosome-specific databases. There is little integration of information across species
boundaries. The most useful integration of data across species occurs through the DNA
sequence databases when a sequence from one organism is found to be significantly
similar to sequences from other organisms. Yet, currently, even within a single-species
database, it is difficult to ask relatively simple questions such as “How many genes on the
long arm of chromosome 21 have been sequenced?”.
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It is difficult to design an effective database to integrate genome and biological data
because of the complexity of the data and related concepts. Many significant biological
database projects to date have been implemented using relational database technology
because the volume of data and the need to assure its safety requires the use of mature,
commercial database management systems. This places additional constraints on the
design of a genome database because relational databases are optimized for transaction-
intensive, record-oriented applications; not applications involving data that have a
complex structure. Data models which are more natural for genome research must be
used to respond more rapidly to changing requirements, an important attribute in a field
that is developing as rapidly as molecular genetics.

While developing a database to address these needs, we have found that a simple and
fundamental abstraction based on graph theory forms the basis for naturally representing
genome and biological data. This abstraction extends traditional design approaches by
improving their capability to represent both complex objects and their interrelationships.
Graphs facilitate communication between system designers and system users because
they are easy to comprehend. They are also easily modified or extended as system
requirements evolve.

2.2. Extensibility and flexibility

Because of the rapid progress of genome research, the requirements of a genome
center database change frequently. A database may require changes because user needs
change or the science changes. Most fields only have to deal with changes in user
requirements and do not have to be concerned with changes in the domain. In genetics
the most common techniques today were not well known 5 years ago and they may be
obsolete in a couple of years. A laboratory database which takes a year to build is
outdated before it is brought online.

The uses of the database can change quickly. As new laboratory techniques evolve and
new projects are brought into a genome center, the database must be changed to support
that research. This requires that the database schema be able to evolve gradually,
without rebuilding the database each time. For the applications to change rapidly, the
database must be flexible and easily extensible.

The meaning of a genome concept can change drastically with the discovery of new
information. An example is the definition of a locus. As large-scale sequencing has
progressed, and location information has become more precise, the term locus has
remained, though it means different things to different researchers. These different
schemas must be captured in the database. Changes in the science also require the
database to be flexible and extensible.

Graphs provide flexibility and extensibility to support the requirements of an evolving
genome center database. Because graphs are nodes connected by edges, adding a new
concept or relationship does not involve redesigning the whole database. It is simple to
add a new node to a graph or a new arc coming off a node.

2.3. Database architecture

The architecture of our genome center database includes a single shared database
which supports multiple applications. A single shared database allows for the integration
of data across a genome center while providing data integrity and security and allowing
access to all data which are publicly available.

End-user applications include laboratory-specific data entry applications, query inter-
faces, editor applications, browsers, and report generation applications. The architecture
of the database should support rapid development of these applications, allowing
developers to create project specific products which access the database. Browsers
should provide a way that users can wander through the data, discovering information as
necessary. Query interfaces should provide ‘canned’ or defined query interfaces as well
as ad hoc query capabilities. In addition, applications such as map editors, contig
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Fig. 1. Schematic diagram of a genome center database.

builders, or graphical display programs should be able to interface easily to the database.
A schematic diagram of a general architecture is given in Fig. 1.

2.4, End user applications

Every data-intensive application developed to support an experimental process must
meet a set of minimum requirements. A user requires that the application be robust,
developed rapidly, be extensible, be able to evolve, provide data security, provide an
intuitive, familiar user interface, and be run-time efficient. System requirements are that
an application should be modular, cost-effective to build and maintain, re-usable, and
not be limited to one database management system. The use of object-oriented software
engineering methodologies, combined with domain analysis and user-interface design
yields an application which can meet the set of user and system requirements.

Object-oriented software engineering provides a framework of specification, analysis,
design and implementation. Emphasis is placed on defining objects within the appli-
cation domain which capture the essence of the requirements. This works well for most
applications, but in database development the addition of conceptual modeling to the
engineering process provides a means of defining the data along with the application.

Domain analysis is a branch of software engineering where the emphasis is on
discovering aspects of the domain which can be used in multiple software applications
[2]. Our conceptual model can be used for domain analysis to capture the essential
concepts without making premature decisions about the importance of each concept.

User interface prototypes are useful for describing an application concretely. When
working prototypes cannot be developed, the interface may be described as a schematic
diagram or a non-working user interface. Many user interface development environ-
ments provide a palette of standard user interface parts which can be manipulated easily
and are useful for developing several variations of a prototype interface that can be
developed quickly and displayed to the user for comment. Describing the user interac-
tion with the system is important and is helped by the prototype being functionally
complete.

3. CONCEPTUAL DESIGN

A database is developed within the context of a database system [3]. A database
system may be thought of as a computerized laboratory notebook. It stores information,
makes it available for later access, and keeps it safe and secure. Laboratory notebooks
work well but are not intended to capture the vast quantities of data which are generated
by large, high-throughput labs with automated equipment. A database system automates
information tracking by storing and organizing data in persistent and secure media. A
database system consists of minimally a database (a collection of data) and a database
management system (a software system which supports access of the data). A database is
developed by designing the database, then implementing it in a database management
system.
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Database systems are especially limited by data representation because they are, by
nature, data intensive, although representation of data is a limiting factor in any software
system. A good representation models the data in a manner which makes the needed
tasks efficient and robust. The representation should not model more than what is
necessary, for this is inefficient, and it should not model less than what is necessary, for
this is not robust.

A design process for databases has been developed [4] which is useful for genome
databases because it separates knowledge of the domain and knowledge of databases.
Thus, the design process is amenable to group database development where one
individual or individuals is more familiar with the biology and another is more familiar
with databases. This situation is the most common dynamic in genome informatics. The
database design process can be used in a realistic setting to develop a genome database
which captures the data efficiently and can be accessed efficiently.

In the next four subsections, we describe our modifications to the design process,
discuss cooperative conceptual design, present background on conceptual models, and
work through an example.

3.1. Database design process

In our database design process, the three stages of database design are conceptual
design, logical design and physical design. After the design process, the database design
is implemented in a database management system. The conceptual design captures the
concepts and relationships of the domain which are to be modeled within the database.
The logical design process translates the conceptual design into the data model supported
by the database management system. The physical design process determines how the
data are to be stored in the data structures provided by the database management
system.

In developing genome databases we have discovered two revisions to database design
which make the process more viable. The first revision is to borrow from software
engineering the spiral model [5] to replace the waterfall model usually used for database
design [4]. The second is to delineate areas of responsibility in cooperative work.

The spiral database design process is more flexible than the waterfall model. The
waterfall model in software engineering states that all requirements specification should
be completed before any of the analysis, which should be completed before any design,
which should be completed before implementation begins. The spiral model is more
flexible and proceeds more like: requirements, analysis; requirements, analysis, design;
requirements, analysis, design, implementation. In addition, rather than beginning with
the requirements for the entire system, often some core part of the system is chosen, and
less central subsystems are added later in development. Database design parallels the
software engineering process for application development. Rather than create a com-
plete conceptual model, it may be more useful to create a conceptual model of the
central concepts and then attempt to design a logical schema which incorporates it. The
prolems and inconsistencies noticed in the logical design step can then be corrected in the
second conceptual design step. The conceptual schema can be extended and the process
repeated. When a central part of the logical schema appears to be stable, physical design
can begin.

Each stage of design requires different areas of expertise. Currently, there are few, if
any, individuals with the expertise to create a genome database which accurately
captures the domain at the current state of the art and also develop a robust and efficient
implementation. The database design process usually assumes that the design will be
performed by one individual or a homogeneous group. Given the current state of
genome informatics, it is more likely that the design will require at least one person from
two distinct groups: those with a deep understanding of the biology and those with a solid
background in databases. The lack of individuals with solid foundations in both
databases and genetics necessitates the cooperation between genome researchers and
informaticians.
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3.2. Cooperative conceptual design

Conceptual design is an interactive process between biologists and informaticians. In
general, the primary responsibility for conceptual design lies with the biologist and the
responsibility for logical and physical design with the informatician. The biologist
examines and understands the logical design enough to ensure that the conceptual design
is being correctly captured and the informatician assists the biologist in creating the
conceptual schema, possibly suggesting alternative representations for complex con-
structs. The physical design is the responsibility of the informatician and the biologist
does not make any physical design decisions.

Definition of the concepts and relationships to be stored in a database is the
responsibility of the domain expert. This person has a better understanding of the
domain than an informatician could because the expert works within the domain on a
daily basis. Conceptual modeling moves the need for understanding of databases by the
domain expert from the initial design phase and allows the expert to define an initial
conceptual model for the domain which can be used as a basis for a conceptual schema.

The informatician ensures that the conceptual schema is complete enough to specify
the domain knowledge of the database. Initially, the developer may use personal
knowledge of the problem to define a partial conceptual schema of the objects to be
stored in the database, though this is primarily a mechanism for teaching the domain
expert the conceptual modeling process.

Good communication between informatician and domain expert ensures that each
domain object is accurately captured. Using the schema as a tool for communication, the
developer and domain expert refine the schema to accurately capture all domain
concepts and their interactions. Discussion involves defining potential queries, necessary
operations, and constraints. Questions may show that additional concepts should be
added or that another relationship between concepts is necessary. The schema continues
to evolve until both the informatician and biologist are satisfied that the domain has been
accurately captured in the conceptual schema.

3.3. Conceptual models

A conceptual model is a language for describing the concepts of a domain in a
database-independent manner. Choosing a language in which to speak or write is not
usually a human option, but in conceptual modeling there are several options from which
to choose. For genome data, graphs appear to be the most appropriate representation.
Some work has already been done in defining graph languages for databases. We
describe the requirements for a conceptual model, existing graph languages, and how
graphs have been used in databases.

3.3.1. Requirements. For concepts to be represented easily in the schema and form the
foundation of a useful database, the conceptual model should be expressive, natural to
the domain, easy for the biologist to use and capable of being manipulated effectively in
a computer. The conceptual model must be able to express the data in the domain, or the
database will not capture all of the data. For a conceptual model to be natural, the
constructs in the model should closely correspond to the domain, and small changes in
the status of domain objects should be captured by the representation and require only
small changes in the representation. A natural model of the domain should be easy for
the biologist to use, and it should avoid introducing obscure functionality or cryptic
notation which unnecessarily restricts its ease of use. In addition, because the conceptual
model will be translated into the logical data model it should have a foundation which is
computationally perspicuous.

There are many different conceptual models which could be used to describe a
domain, such as a natural language or an object-oriented one. A natural language, such
as English, meets most of the requirements for a conceptual model. Natural languages
are expressive, natural and easy to use. Unfortunately, natural languages are also vague
and imprecise and thus not easily modeled on a computer. Another data model which
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could be used for conceptual modeling is an object-oriented language, but object-
oriented languages appear to be too behavior-oriented for capturing complex structures.

We do not need the expressiveness of natural language to model genome data, but if a
formal language developed for computational linguistics were natural to the domain of
genetics and easy for biologists to use, it would make a useful conceptual model. Graph
languages have been developed within computational linguistics to effectively represent
natural languages on a computer. We have found graph languages to be useful for
capturing genome data, since they are expressive, natural for genomics, easy to use and
have a firm computational foundation.

3.3.2. Graph languages. Graphs capture the structure of genome data. The simple
language of graphs also allows a biologist and a computer scientist to communicate,
encouraging change and improvement of the domain objects as the development process
evolves. A graph conceptual model is a language for describing the concepts (including
relationships) of a domain as a labeled, directed graph. The graphs in the language are
called conceptual schemas, which are graphs with labeled nodes and edges in which the
labeled nodes represent concepts and the labeled edges represent the relationships
between nodes. A conceptual schema describes the concepts and relationships in a
particular domain. An example conceptual schema is shown later in Fig. 2.

Our graph conceptual model is based on feature structures [6], y-types [7], conceptual
graphs [8], and terminological description logics [9] which are representation formalisms
used in computational linguistics. Entity-relation diagrams [10] are similar to a graph
conceptual model, but they require more decisions to be made earily in design. In our
conceptual design process, the essential concepts are captured without making decisions
about the importance of each concept. Entity-relation diagrams are useful for the logical
database design phase and have been used successfully in the design of scientific
databases [11, 12]. Graph conceptual models are more useful for conceptual design
because they are not as dependent on the relational data model and require fewer
decisions to be made early in the design. Using only vertices and edges gives the
developer the freedom to capture all concepts without being forced to make premature
decisions about relative importance of the concepts.

3.3.3. Data models. A conceptual model is a data model used for conceptual design.
Data models are a way of describing a formal language for manipulating data. Data
models are often used to describe the logical design language of a database, but they can
also be used to describe the conceptual design language.

A data model defines the types of data the database stores and the operators which
manipulate them. Data models as a theoretical tool were first proposed by Codd [13] to
describe the relational database in an abstract, formal manner. A data model describes
and restricts how data is to be represented and manipulated. A data model is a formal
means of representing and manipulating the structures of a database and is usually
defined in terms of type constructors, operators, and integrity constraints [1, 14, 15].
Common data models include the relational data model for relational databases and
F-logic [16] or complex objects [17] for object-oriented databases [18].

Other data models include the network, functional (or semantic), and logic data
models. The network data model is a physical data model (like hierarchical). It stores
data as binary, many-to-one relationships, but is tied to the storage mechanism used.
Logic data models are defined using mathematical logic and often use a subset of first-
order predicate logic. Semantic data models originated from semantic networks that
were developed as tools in artificial intelligence for representing the semantics of natural
language. They often have a graph-like structure built from functional arcs or a small set
of type constructors.

Graph data models formalize the representation and manipulation of graph data
structures for database systems by defining a collection of graph-oriented type construc-
tors and operators which create and access graph data structures. All graph data models
have as their foundation the mathematical definition of a graph, which is a collection of
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Fig. 2. Basic conceptual schema of a marker.

nodes and edges. The data models are often used to support an application, such as
visual querying [19], end-user interfaces [20], hypertext systems [21] or extensible
databases [22]. Unlike the relational data model which has one incarnation, there are
several extensions to the definition of graphs which form foundations for different graph
data models. Most graph data models usually add labels to the nodes or edges or both.
Sometimes the basic definition of a graph is changed by allowing nodes to encapsulate
graphs [21] and allowing edges to relate to other edges [19]. Related data models include
GOOD (23], G+ /GraphLog [19], and Hyperlog [21].

3.4. Domain description

One application of conceptual modeling is in the development of laboratory databases.
Laboratory mapping databases store information, such as markers, probes, clones,
primer pairs, PCR conditions and allele information. This should all be captured in a
conceptual schema.

There are many types of markers that are useful in finding the location of genes. One
useful type is the dinucleotide repeat marker. At many locations in the genome, two
nucleotide bases, such as CA, are repeated. The number of repeats can vary between
people and the pattern of inheritance of these different alleles can be examined within a
family to estimate how likely a marker is to be inherited along with a gene being searched
for. These probabilities can be used to estimate the location of the gene with respect to
other markers whose locations are known by converting the probability to a distance
using a mapping function [24].

There are various factors which make some dinucleotide repeat markers more useful
than others, and discovering useful markers is a fairly involved process, which can be
supported by databases capturing the appropriate laboratory data. A central concept in
the domain is a marker, and we will describe that concept first.

A marker is defined by a name, a location on a chromosome, a marker type, and a set
of alleles. Our basic conceptual schema for a marker is shown in Fig. 2.

We have chosen to represent the set of alleles as a separate graph node because of the
complexity of information which may be associated with an allele set (especially when
multiple populations are being studied).

Other information is also important for certain types of markers or particular
applications. For example, a dinucleotide repeat marker is also defined by the oligonuc-
leotides which surround it and variability measurements of a marker, such as heterozygo-
sity, are very important in choosing markers to be used for linkage analysis. Figure 3
captures this information.

Other factors may also be important. For example, to ensure that the appropriate
repeat counts are read from a gel, reference sizes which correspond to commonly
available sources of DNA are necessary. While not an integral part of the definition of a
marker, reference sizes are required for some applications.

One conceptual schema for representing the relations between markers and the clones
which are used to discover them is presented in Fig. 4, which shows the relationship of a
PCR marker to a clone which contains it. The clone is related to the marker through the
oligonucleotide which occurs in the sequence of the clone and which serves as the PCR
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heterozygosity

Fig. 3. Conceptual schema of a PCR marker.

primers for the marker. A clone may have many oligonucleotides. This also shows that
the graph representing the structure of a concept may not always have a tree structure.

4. DESCRIPTION OF MODEL

A graph conceptual model is a formal system which represents the concepts and
relationships of a domain as a graph. We use a form of the graph data model for
capturing the concepts and relationships of genetics.

A relation is defined mathematically as a set of n-tuples. Graphs are defined in graph
theory as a collection of vertices and edges G = (V, E) [25]. The vertices in a graph refer
to genomic objects or n-ary relations and the edges refer to binary relationships (links)
between them. We have extended the basic theoretical definition of a graph to create a
conceptual model.
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Fig. 4. Conceptual schema of a PCR marker and a clone which contains it.
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The graph model which we use to capture genome concepts consists of three
extensions to the basic definition of a graph. The first extension is the definition of a
concept as a vertex of a graph. Each vertex is labeled with the name of a concept. The
type of link between two genomic concepts is also important, thus the second addition to
the definition of a graph is a collection of edge labels. The edge labels specify the
characteristics of one of the objects, a relation between the two vertices or the role that
one of them has with respect to the other. For exampe, valid relations between a cosmid
and a YAC would include “hybridizesTo”, “generatedFrom”, or “sharesSTS”, or a
plasmid might be in relationship to sequence or location objects. The third extension is
the addition of cardinality constraints to the edges.

There are four data types in our graph representation: concepts, edges, edge labels,
and cardinalities. A graph is a collection of concepts, edge labels, cardinalities, and edges
where:

® concepts are the nodes of the graph and model the simple concepts and n-ary
relations of the domain;

® cdge labels on the edges describe the relation which holds between the two vertices
and are uniquely named;

® cardinalities are either a positive integer or “many”; and

® cdges connect two vertices. There can be multiple edges between two vertices (with
different edge labels). There is a cardinality for each vertex of an edge. Thus, an
edge is a relation between two concepts, one link name, and two cardinalities.

For example, in Fig. 2 a marker has one name, one type, one location and many
alleles. The “many” cardinality is denoted by an “*”, and the “one” cardinalities are
omitted.

There are an additional four extensions to the graph representation which are useful in
practice, but which do not describe formally: views, constraints, operations and queries.
A graph representation may be broken up into several diagrams, or views, which
represent the various configurations in which the links may occur. Constraints include
cardinality and type, and operations describe how data are stored and accessed.

A conceptual schema is a collection of conceptual diagrams that define views of the
domain. Concepts and links may be shared between diagrams. A conceptual schema
should include enough diagrams to show all the links that a concept may have and the
various configurations in which the links may occur, but it is not necessary to show each
state in the concept’s lifecycle. For example, a marker allele may have a name and a
frequency in a certain population, or it may have a size and a frequency in a certain
population, but alleles do not typically have both names and sizes. When the database is
developed, there may be a user view which corresponds exactly to a single (or a few)
conceptual diagrams.

A diagram should be augmented with constraints which must hold between the
concepts and links. Cardinality constraints are included in our formal model, but other
constraints provide additional information. For example, one could state that the length
of each cosmid sequence is between 10 K and 100 K bases. Although some work has been
done on graphical representation of constraints, we have found it best to describe the
constraints as text.

A conceptual model is more than a static description of the data and should also
describe the transactions which are to be performed on the database and the constraints
which must hold on the data. It is also useful to describe queries which are likely to be
asked. We have not found a general way of describing transactions in a manner
independent of the database management system used, so we list the operations which
may be performed on the data.

Queries are best represented as a corpus of English (natural language) queries which
are likely to be asked. They should describe a variety of queries, but do not need to be
exhaustive.
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5. CONCEPTUAL SCHEMAS

In natural languages, such as English, concepts are captured in sentences or para-
graphs. In conceptual modeling, concepts are captured in schemas, which can be
combined together to capture more complex concepts. Design is the process of moving
from a rough draft to a final product. When writing a paper, one usually begins with an
outline which captures the major concepts and describes the flow of the paper. In
conceptual modeling, a preliminary schema is used to capture the major concepts and as
a basis for discussion. When one is satisfied with the final draft of a paper, it is submitted
for publication; in the same way, when one is satisfied with a schema, it is implemented
in a database. We describe our approaches to developing a preliminary schema and
translating it into a database.

5.1. Developing a preliminary schema

The first step in conceptual modeling is to develop a preliminary schema. By creating a
preliminary schema, the biologist defines the important concepts in the domain and the
relationships that must be captured in the database, without the need to understand any
database management system. After the preliminary schema is developed, it can be
refined with the help of the informatician to provide a baseline for discussion and
understanding of the domain.

The four steps to develop a preliminary schema of a domain are: listing the domain
concepts; creating simple sentences which describe relationships in the domain; drawing
major concepts as nodes in a graph; adding relationships as edges in a graph.

The first step in creating a graph representation is to list the concepts in the domain.
Concepts are real world objects, relationships, and events, such as Experiment, YAC, or
Hybridization.

The second step is to list simple sentences containing two domain concepts and a
linking word or phrase. Linking phrases are descriptions of the interaction of the two
domain concepts which describe the relationship clearly. They include: “has a name”,
“contains as an element”, “hybridizes to”, “probes”. If the phrase describes a complex
relationship, the relationship should be treated as a concept. For example, “YAC
hybridizes to an STS” is a complex concept which is important in the experimental
physical mapping domain. It is necessary to create the concept of Hybridization and
create the sentences “YAC is target in a Hybridization” and “STS is probe in a
Hybridization” and “Hybridization has Experimental Evidence” instead of the single
sentence “YAC hybridizes to an STS”.

After the concepts have been linked using simple sentences, the third step is to select
major concepts from the concept list and draw them as nodes in a conceptual schema.
The major concepts should be selected based on each concept’s relative importance in
the domain.

The fourth step is to draw the simple sentences as edges between the two concepts and
label the edge with the linking phrase. The direction of the edge should be the same as
the sentence. To make the schema diagram more readable, we have chosen to drop “is a”
and “has a” parts of the linking phrase from the label but leave the rest of the phrase.
This results in some edges having the same label as the ‘receiving’ node.

After a preliminary schema has been developed, it should be used as a starting point
for refining and elucidating the conceptual schema. Refining the schema is a cooperative
process between the domain expert who created the preliminary schema and the
informatician who will implement the database.

Another graph schema is shown in Fig. 5. The graph describes a filter hybridization
experiment for a laboratory process concerned with identifying cosmid clones with
regions homologous to cDNA clones. The process consists of a series of hybridization
experiments between cDNA and cosmid clones. Within the process, muitiple experi-
ments are completed which work together to isolate a relationship between an individual
cDNA clone and cosmid clone. Because each experiment can produce multiple results,
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conditions

experiment

Fig. 5. Conceptual schema for a filter hybridization experiment.

the software should help eliminate redundant experiments, record experimental data,
and release final results to other researchers.

5.2. Translating from a conceptual schema

We have developed strategies for mapping a graph conceptual schema to a relational
or object-oriented schema. To map a graph conceptual schema to a relational database
the conceptual schema is translated to an ER diagram, then an ER diagram is
transformed to a relational database [4]. To create an object diagram from a conceptual
schema, decisions are made about which concepts are central to the design and which
relationships are required for an object to exist. An additional diagram is created after
each decision and these two diagrams are used with the conceptual schema to create an
object diagram, which documents the schema of an object-oriented database.

5.2.1. Relational database. To develop a relational database from a graph conceptual
schema, the strategy is to make use of an Entity-Relation (ER) diagram [10] as an
intermediate result. The conceptual schema is first translated into an ER diagram. The
second stage is to develop the relational database from the ER diagram. This translation
process is well understood and is clearly presented in [4].

Our conceptual model does not distinguish between concepts which might be con-
sidered principal, concepts which have a fundamental dependence on other concepts for
their existence and concepts which are not as important as others but merely add
descriptive details. These distinctions are made in the ER diagram and form the basis of
ER-driven design. An ER diagram describes a database in terms of entities, relation-
ships, and attributes. To translate a graph conceptual schema to an ER diagram, the
concepts from the conceptual schema are separated into the three classes:

(1) principal concepts are described as entities;

(2) concepts which do not have their own essential independence in the domain are
describe as relationships; and

(3) concepts which add detail are described as attributes.
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5.2.2. Object database. The conceptual schema captures all the objects in the domain.
To create an object model from a conceptual schema, two decisions are made. The first is
to decide which concepts are central to the design. The second is to distinguish the
relationships which are required for an object to exist. An additional diagram is created
after each decision: a domain object diagram and an aggregation diagram, respectively
[26]. These two diagrams are used along with the conceptual diagram to create an object
model.

A domain object diagram shows the concepts which are to be modeled as objects.
After the conceptual schema has been drawn, a decision about the relative importance of
each concept is made. Objects are created for the central concepts, and the less
important concepts are dropped from the diagram. A domain object diagram shows the
relationships between the objects in the domain. One heuristic is to consider all nodes
which have no outgoing arcs to be attributes of the node on the other end of the arc.
Eliminating the attribute nodes from the graph leaves the domain objects. The domain
object diagram is basically a subgraph of the entire conceptual schema. No decisions are
made in this step other than eliminating attribute nodes.

From the domain object diagram, an aggregation diagram can be developed. When
one object depends upon another for its existence in the domain, the relationshp is
captured in an aggregation diagram. Aggregation is a relationship between an object and
other objects in the domain, where the description of an object is based on the other
objects. The aggregation diagram describes domain objects which play an attribute role
in the conceptual diagram but must be modeled as separate objects because they have
their own attributes. For example, an experiment has a relationship with a filter, a probe,
and an investigator, and an experiment cannot exist in the database without probe and
filter. Therefore an experiment is an aggregation of probe and filter. The same
experiment could be described without knowing the person who investigated it, so the
person is not part of the aggregation.

Aggregation diagrams, domain object diagrams, and conceptual schemas are used
together to create the object model, as shown in Fig. 6. Sometimes additional objects
may need to be defined as helper objects or subclasses for complex concepts, but this can
take place as a normal part of object-oriented development. Our object model is

experiment person
it * | - +hybridization hame
conditions . L ; : user_id
creation_date investigation inve%ti ateg— B vestigator
id * Ve o 1ab
comment privilege
probe 1..96
id ___filter contains contained_in spot
id spot a
creation date * !
e — - — — — 1 1 container

[name | .
o

| !
| |
| |
] . . 1
I <> relationship | 1| contents
| |
| |

1.96 * cardinality constraint hybridization

clone

L e e e e e e = — — - |_probe target
id id

Fig. 6. Object model for filter hybridization experiment.
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described using Fusion notation [27]. Concepts of multiplicity in relationships, aggrega-
tion of objects and attributes are combined into a single set of diagrams representing all
domain objects in the application. The object model is used in the rest of analysis and
design.

6. OTHER USES OF CONCEPTUAL MODELS
Conceptual models are not just useful for database design. Other uses are:

(1) development of complex representations (data structures) for application pro-
grams;

(2) the logical data model of a new kind of DBMS;

(3) representation language for data exchange.

Databases are not the only software systems that depend upon data representation.
All systems are affected by representation to some extent. Designing appropriate data
structures are important for any data-intensive application. Many data structures exist,
but they are not always sufficient for new application areas. Conceptual modeling can
contribute by providing a mechanism to discuss and develop appropriate data structures
and to provide a language for domain analysis [2] for software development.

Most advanced database management systems are founded on a data model which at
one time was appropriate for conceptual modeling. The relational model helped create a
level of abstraction above the files and pointers that most databases were built around.
Objects originally arose in artificial intelligence as a mechanism for structuring data and
evolved into a useful programming technique. Graphs may also be used as a foundation
of a new kind of database management system that stores genome data directly in a more
natural framework [28, 29].

Database integration across databases is made more difficult because of differences at
the physical and logical design layers. Exchanging data in the common language of a
conceptual model can simplify the task by centering the exchange of data around the
fundamental concepts of each database.

7. CONCLUSION

We have investigated using graph theory as a foundation for conceptual models and
have found that graph conceptual models simplify development of robust genome
databases. Three advantages of graph conceptual models are that they

(1) help capture and document laboratory and Genome Center work flow;
(2) facilitate communication between biologists and informaticians; and
(3) support database development which accurately represents biological data.

Graph conceptual models do not appear to be limited to the genome domain, but they
are well suited to it because of the graph-like structure of genome data.
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